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ABSTRACT

A comparative, quantitative study of image
compression techniques for use with digital particle
image velocimetry has been performed.  Several
candidate compression algorithms were selected for
the study including a lossless technique and a series
of mathematical transform-based methods.  Each of
the compression algorithms was implemented using
commercial off-the-shelf software packages.  Three
image sequences were selected to exercise the various
compression methods.  These sequences included a
set of industry standard images and two sets of
images obtained from experimental work conducted
at NASA Langley.  Evaluation of the various methods
was accomplished using quantitative perceptual and
metrological performance measures.  The results of
the study indicate that several methods of
compression are applicable to digital particle image
velocimetry images.  For selected applications where
thresholding of the image gray levels can be
performed, lossless algorithms yield excellent
performance in terms of compression rates and
introduction of negligible errors to the images.  For

applications where thresholding is not appropriate,
JPEG and wavelet-based algorithms yield high
compression rates with minor spatial errors
introduced to the images.  Fractal-based algorithms
were shown to be capable of providing high
compression rates, but the technique must be guided
via the use of a suitably selected template image if
spatial errors are to be minimized in the compressed
images.

NOMENCLATURE

totB Total bits in original image

totB
~

Total bits in compressed image

DCT Discrete cosine transform, see
eqn. (2)

RMSuE , Global spatial error estimate of u

component vector, pixels, see
eqn. (8)

RMSvE , Global spatial error estimate of v

component vector, pixels, see
eqn. (8)

uE Spatial error estimate of individual

u component vector, percent, see
eqn. (9)

vE Spatial error estimate of individual

v component vector, percent, see
eqn. (9)

FVR False vector rate, see eqn. (10)
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),( jif Intensity of ith, jth pixel of original

image
),(’ jif Intensity of ith, jth pixel of

thresholded image

),(
~

jif Intensity of ith, jth pixel of

compressed image

gL Maximum gray levels in image

m Decomposition levels in discrete
wavelet compression

NM , Number of horizontal and vertical
pixels, respectively, in image

QP, Number of horizontal and vertical

displacement vectors, respectively,
in vector map

PSNR Peak signal-to-noise ratio, dB, see
eqn. (7)

),( jiu u displacement component obtained

from processed original image,
pixels

),( jiv v displacement component obtained

from processed original image,
pixels

),(~ jiu u displacement component obtained

from processed compressed image,
pixels

),(~ jiv v displacement component obtained

from processed compressed image,
pixels

)(xφ Recursive wavelet basis function,

see eqn. (3)

INTRODUCTION

Digital Particle Image Velocimetry (DPIV) has
become an accepted technique for the measurement
of two and three component planar velocities in a
wide variety of fluid flows, and several good tutorials
and reviews outlining advances in the state-of-the-art
of the technique have appeared recently.1-4  Over the
past several years, significant improvements have
been achieved in DPIV acquisition hardware with the
introduction of high-resolution, large-format cameras
which are capable of acquiring images at 10 frames /
second and faster.  Associated with the introduction
of these new camera technologies, stereo DPIV
systems have recently been described in the literature
which incorporate as many as four separate cameras.5

With the increase in the number of cameras employed
in these systems as well as the increase in the pixel

count per camera, the issues of image storage and
management become relevant.  For instance, the
authors recently completed a series of DPIV tests in
the NASA Langley Subsonic Basic Research Tunnel
which required the use of four separate 1300- by
1030-pixel cameras connected to 8-bit digitizing
frame grabbers.  During four days of testing, 32,800
separate images were acquired.  These images
required approximately 41 gigabytes of hard drive
storage space, and were archived on 68 CD-ROM
disks.  For a typical turbulence study where
acquisition of several thousand images is required for
a single flow condition, the total storage space needed
for these images can quickly become problematic.  In
addition, new technologies are forthcoming which
will enable high speed DPIV acquisition at rates
surpassing 1000 frames / second.  The cost of storage
media has rapidly diminished over the past decade;
nevertheless, there remains a need to achieve
maximum efficiency in the archival and retrieval of
vast numbers of acquired images.

One established method for improving the
efficiency of handling large numbers of images
involves compression of the image data during
storage.  A large number of books and papers have
been written describing and contrasting various
methods of image compression.  Classically, studies
characterizing the performance of various
compression methods have concentrated on
qualitative measures of performance based on human
visual perception – a perfectly acceptable criteria
given that a majority of image processing algorithms
are designed to provide outputs which are viewed by
people.  With a few exceptions (most notably
astronomical imaging), less attention has been paid to
the consequences of using compressed images in
metrological applications like DPIV.  In particular,
the effect of image compression on post-processed
data accuracy has not been extensively addressed.
Because DPIV technology is now being applied in
numerous laboratory and industrial settings to collect
large numbers of images, a few groups have begun to
look at the implications of using compression
techniques to reduce the storage requirements for
DPIV data.  A few papers describing techniques
compatible for use in DPIV acquisition have been
presented in the literature over the past two years.  In
particular, Li6 presented a good examination of
various wavelet methods in relation to DPIV image
de-noising and information retention.  Freek et.al.7

examined the accuracy of using JPEG compression
on sequences of synthetic DPIV images.  Cenedese
et.al.8 examined using two different compression
techniques, namely the JPEG algorithm and a lossless
technique applied to binary versions of the original
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DPIV images.  These studies represent advances in
understanding the effects of applying image
compression to DPIV.  Nevertheless, a
comprehensive study using a number of quantifiable
performance measures characterizing the
measurement uncertainty in the displacement vector
maps derived from analysis of compressed DPIV
images has not been performed.  Also, the
implications for choosing a lossless versus a lossy
(i.e., loss of information) compression algorithm have
not been thoroughly examined.

To complement and extend the previous work
given in references 6-8, a comparative yet
quantitative study has been conducted of several
popular image compression techniques, both lossless
and lossy, with regard to their effect on the accuracy
of DPIV-derived displacement vector maps.  Several
key performance measures based on compression
rates, signal-to-noise levels, and spatial distortions
were chosen to evaluate each candidate technique.
Three different sequences of DPIV images, two
experimentally obtained and one an industry standard
sequence, were chosen to exercise each candidate.
This paper presents brief descriptions of the
candidate compression techniques, performance
measures chosen to evaluate each candidate, and
some representative results comparing the
performance of the various techniques.

CANDIDATE COMPRESSION ALGORITHMS

The authors chose one lossless, one modified
lossless, and three lossy image compression
techniques for this study.  The lossless technique
examined was the Lempel Ziv 77 (LZ77) dictionary-
based compressor.  This algorithm was included in
the study to provide baseline lossless compression
rates as well as to establish guidelines for determining
when use of a purely lossless technique may be
preferable.  The modified lossless technique consisted
of the LZ77 algorithm coupled with gray level
thresholding of the images before compression.  This
technique is somewhat similar to that described by
Cenedese in reference 8.  However, Cenedese created
a binary image after thresholding, whereas the
technique used for this study consists of a simple gray
level truncation technique which maintains an 8-bit
image.  The lossy techniques which were examined
are all based on various mathematical transformation
and recursion equations and include the discrete
cosine transform, the discrete wavelet transform, and
a recursive fractal equation.  Each of these algorithms
is described in more detail subsequently.  A summary

of characteristics for the various candidate algorithms
is presented in Table 1.  Each algorithm was
implemented for this study using readily available
commercial off-the-shelf software packages.

LZ77 Compression:  The LZ77 lossless compression
algorithm was first described by Ziv and Lempel9 in
1977 and is often referred to as a sliding window
coding algorithm.  Variations of the LZ77 algorithm
are incorporated into popular programs such as
PKZIP and LHarc.  The algorithm, shown in block
diagram form in Figure 1, encodes incoming data by
maintaining the last n bytes of the data as a dictionary
buffer.  The length of the buffer is user defined and is
typically fixed in the range of 2048 to 16384 bytes.
When an incoming block of data matches part of the
dictionary buffer, three values are sent to a
compressed output file (which also contains the
dictionary buffer) – the matching position in the
buffer, the matching length, and the byte or character
following the match in the buffer.  Compressed files
are reconstructed via a table look-up procedure using
the dictionary buffer and pattern matching data.  The
LZ77 algorithm provides for fast compression and
decompression.  However, non-textual data (e.g.,
binary image files) typically cannot be compressed
more than approximately 30 percent using LZ77 due
to the relatively short matching sequences of bytes in
the data.

To overcome the limited image compression
capability of the LZ77 technique, a modified
algorithm is proposed which couples the LZ77
compressor to a thresholding process.  Before
compression, image pixels are gray level thresholded
using a simple truncation formula:



 ≥

=
otherwise

thresholdjififjif
jif

0

),(),(
),(’          (1)

where f(i,j) represents the ith, jth original pixel value
and f’(i,j) represents the corresponding thresholded
value.  The benefit of performing this operation prior
to compression derives from the structure of a typical
DPIV image.  Such images are composed of small
groups of illuminated pixels superimposed on
essentially a black background dominated by noise.
By careful choice of the threshold level, the
background can be forced to zero, thereby increasing
the matching length between sequences of pixels and
the LZ77 dictionary buffer.  This can dramatically
increase the compression rate over using LZ77 alone.
While not a lossless technique in the strict sense, the
method can still be thought of as a “pseudo” lossless
technique.  As will be seen, if the threshold level is
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carefully chosen, increased compression can be
achieved with no change in the accuracy of the DPIV
processed vector displacement data as compared with
use of non-compressed images.

JPEG Compression:  The Joint Photographic Experts
Group (JPEG) compression standard is the leading
technique for use in numerous imaging applications10,
and is incorporated into a number of commercial
DPIV processing systems.  The algorithm is based on
the two-dimensional discrete cosine transform (DCT)
pair:
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where f(i,j) represents the value of the ith and jth pixel
in the original image and DCT(x,y) represents the
corresponding image transform coefficient at a spatial
frequency identified by coordinates x and y.  The
image f is assumed to be square in equation (2).  The
popularity of the JPEG technique is partly due to the
speed of the algorithm – the DCT transform shown in
equation (2) is separable, allowing it to be efficiently
implemented as a series of one-dimensional fast
Fourier transforms.  This is accomplished by first
performing a one-dimensional transform of each pixel
row in the image followed by a transform of each
pixel column.

A diagram illustrating how the DCT is applied
for monochrome image compression is shown in
Figure 2.  An input image is broken up into a series of
non-overlapping 8 x 8 pixel blocks.  Each pixel block
is independently transformed into the spatial
frequency (wavenumber) domain using the DCT.
Because of the small size of the pixel blocks, a very
efficient table look-up implementation of the DCT
can be formed which dramatically improves
performance of the algorithm.  After converting each
block to the spatial frequency domain, the DCT
coefficients are represented in integer form and a
coefficient quantizer (implemented as a series of
multiplicative quantization matrices) is used to reduce
the number of bits required to store each coefficient.
The coefficients are then encoded using lossless
run-length and entropy schemes.  The use of variable
quantization matrices allows the user to easily specify
the amount of compression to perform, thereby

providing a measure of control over the resultant
image quality.  However, an overly aggressive
quantization matrix may cause severe degradation in
compressed image quality.  As the number of bits
required to store the coefficients is decreased, high-
wavenumber information in the 8 x 8 pixel block is
removed.  The loss of too much information results in
a visible “checkerboard” pattern in the image,
referred to as Gibb’s phenomenon.  Gibb’s
phenomenon is a major limiting factor in application
of high JPEG compression rates.  In particular, for
cases where a DPIV particle image crosses an 8 x 8
pixel block boundary (which is quite likely), Gibb’s
phenomenon manifests itself as a change in the spatial
distribution of the particle image during compression.
This spatial change imparts an error to the image
displacement vector derived from the particle image.

Wavelet Transform Compression:  Wavelet-based
image compression relies on performing a
mathematical transformation of the original image
followed by a reduction in the storage size of the
transform coefficients.  In a typical Discrete Wavelet
Transform (DWT) analysis of an image, shown in
Figure 3, a set of four complementary filters is used
to decompose the image into four different
components: approximation (A), horizontal detail
(HD), vertical detail (VD) and diagonal detail (DD).
The approximation image captures the low-
wavenumber information in the image, while the
detail images capture the high-wavenumber
information along the horizontal, vertical and
diagonal directions.  The specific filter coefficients
used in the decomposition are related to the wavelet
family used in the analysis.  Wavelets are orthogonal
functions, and functionally the DWT is very similar
to the Discrete Fourier Transform (DFT) and DCT
which also incorporate orthogonal transforming
functions.  The main difference between the DWT
and the DFT / DCT is in the characteristics of the
basis functions used.  Whereas the DFT and DCT use
sinusoids as basis functions, the DWT uses a set of
basis functions that are defined by the recursive
difference equation

        ∑
−

=

−=
1

0
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J

k
k kxCx φφ         (3)

where J represents the number of non-zero
coefficients C in the recursion.  The most commonly
used family of wavelets for image compression are
the Daubechies wavelets.  In particular, the
Daubechies third-order wavelet is suited for DPIV
image compression because this function produces a
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satisfactory representation of an idealized one-
dimensional model of particles in a DPIV image.
Other commonly used wavelet families for image
compression include Coiflets and Baylkin wavelets.
In reference 6, Li presents a comparative study of
these various families used for DPIV compression.

After image decomposition using a suitable
wavelet family defined by equation (3), each of the
component images (A, HD, VD and DD) can be fully
described using a number of wavelet coefficients that
is equal to ¼ the size of the original image.  That is,
after a one-step DWT analysis, the number of ‘pieces’
of information required to represent the original-
image fully is exactly the same as before.  However, if
the information in the image is for the most part
localized in space, the majority of the detail wavelet
coefficients should be negligible.  Hence, most of
these coefficients can be discarded without significant
loss of image fidelity, resulting in a reduction in the
amount of information needed to represent the
original image and thus achieving image
compression.  If all the detail coefficients are
approximately zero (when A contains all the relevant
information) an information compression of ¼ is
achieved.  This represents the best attainable
compression using a one-step DWT approach.
However, if one is to apply the DWT analysis
recursively on A up to an m-step DWT
decomposition, it is easy to see that the best attainable
compression ratio is given by

     
m

CRMax
)4/1(

1
)( =                  (4)

Thus, in wavelet-based image compression, one may
increase the amount of compression by increasing the
decomposition level (m) and/or discarding more
detail wavelet coefficients.

In practice it is not possible to discard all of the
detail coefficients to achieve maximum compression
while at the same time maintaining an acceptable
image quality.  Thus, the insignificant detail wavelet
coefficients are determined and discarded using a
user-selectable threshold level.  The easiest approach
for setting such a threshold is known as the global
approach where a single threshold value is used for
all detail images regardless of their DWT coefficient
level.  In such a case, the threshold value is varied
systematically until one achieves an ‘acceptable’
balance between the fraction of coefficients discarded
and retained image energy.  However, this method is
subjective.  A somewhat better approach is one where
the selected threshold value depends on the level of
decomposition.  In this method, the threshold is

typically selected as a fraction of the largest detail
wavelet coefficient at each level, the median of the
wavelet coefficients at the different levels, etc.
Again, this method is subjective and incapable of
transparently adapting to different types of images.
Much of the research into improving the quality of
wavelet-based compressed images has concentrated
on developing new methods of choosing the best
threshold for removal of detail coefficients.

The ability to threshold wavelet coefficients
over the complete set of detail images provides an
advantage over DFT- and DCT-based techniques like
the JPEG algorithm, since the DWT operates over a
range of spatial wavenumbers.  In other words,
wavelet image compression removes information
from the image across multiple spatial scales, and
thus should provide superior image quality at higher
compression rates relative to other techniques.

Fractal Compression:  A different class of image
compression based on fractal self-similarity has
appeared in recent years, and shows promise for
achieving very high compression ratios while
retaining reasonable details in the compressed
images.11  Only a brief overview of the technique is
presented here – for more detail the reader is referred
to an excellent description of fractal compression by
Nelson and Gailly.12  In general, the fractal image
algorithm creates a compressed file containing a
packed list of transformation coefficients which map
the original image to itself, in essence creating a
mathematical model for the image.  Using this model,
the original image can be reproduced at any
resolution desired, even resolutions higher than the
original uncompressed image.  Because only the
mathematical model need be saved, very high
compression ratios are possible using this technique.
However, since a self-similarity model is employed to
compress an image, the algorithm is susceptible to the
creation of unwanted artificial details or artifacts in
the reconstructed image.  These artifacts can corrupt
the information content of the image.  For example,
artifacts in a fractal reconstructed DPIV image can
appear as spatial distortions in individual particle
images, greatly reducing the accuracy of any
processed displacement vector data derived from
these images.  However, these artifacts can be
reduced by use of a fractal template containing small
representations of features in the image to be
compressed.  Impressive improvement in compressed
image quality can be achieved using templates.  Most
commercial software packages which implement
fractal compression support the use of fractal
templates.
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COMPRESSION PERFORMANCE MEASURES

One of the challenges in conducting a
comparative study of algorithms for image
compression involves the selection of performance
measures used to evaluate the results of the study.
The image processing community has traditionally
used three primary measures of performance for
evaluating compression algorithms.  The first
measure is referred to as the compression rate, and is
defined as the ratio of the number of bits in the
original image to those in the compressed image:

    
tot

tot

B

B
RatenCompressio ~=         (5)

where Btot and totB
~

 are the total bits contained in the

original and compressed images, respectively.
Obviously as a higher compression rate is achieved, a
smaller and thus more efficient compressed image file
is generated.  The second measure which is similar to
the compression rate is the bit rate, defined as:

        
MN

B

pixel

bits
RateBit tot

~
==         (6)

where M, N are the image pixel height and width,
respectively.  The bit rate can also be used to
determine the efficiency of an algorithm, with a lower
bit rate representing a more compact compressed
image file.  The third commonly used performance
measure is the peak signal to noise ratio, defined as:
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where Lg represents the maximum number of gray
levels in the image (256 for an 8-bit monochrome
image), ),( jif  represents the ith, jth original image

pixel value, and ),(
~

jif  represents the

corresponding compressed image pixel value.  The
PSNR is commonly used to provide an objective level
of performance of the compression algorithm in terms
of the fidelity of the information retained in the
compressed image.  It is commonly accepted that
images with PSNR levels above 32 dB are
perceptually lossless.  Nevertheless, the PSNR is not
a sufficient predictor of metrological errors which
may be introduced to the compressed images.  DPIV
is a time-of-flight measurement technique where

retention of pixel spatial information is equally
important to retention of pixel amplitudes.  Therefore,
additional performance measures need to be defined.
The authors chose to implement two different spatial
error estimates based on examination of processed
displacement vector data obtained from original and
compressed DPIV images.

One measure implemented for this study
consists of a root-mean-square (RMS) error estimate
computed using the displacement vectors derived
from processing both the original and compressed
DPIV images.  This measure provides a look at
global spatial biases imparted to the images as part of
the compression process.  The RMS error estimates
are defined as:

        

∑∑

∑∑

= =

= =

−=

−=

P

i

Q

j
RMSv

P

i

Q

j
RMSu

jivjiv
PQ

E

jiujiu
PQ

E

1

2

1
,

1

2

1
,

)],(~),([
1

)],(~),([
1

     (8)

where ),(),,( jivjiu are the ith and jth horizontal

and vertical components of displacement in the
processed data obtained from the original DPIV
image, ),(~),,(~ jivjiu  are the corresponding

components obtained from processing the
compressed image, and P,Q are the number of
horizontal and vertical displacement vectors in the
processed data, respectively.  Equation (8) is a
modified version of an error function described by
Huang, et.al.13, for use in DPIV error investigations.
In practice, the Eu,RMS and Ev,RMS functions should be
approximately zero if the individual vector
component errors are truly random in nature.

To accompany the error estimates given in
equation (8), an additional performance measure
which examines individual image displacements on a
percentage basis can be defined by:
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Using equation (9), Eu and Ev are computed
with respect to the local u and v vector magnitudes
over the entire ensemble of processed displacement
vectors.  The results are presented in the form of a
histogram representing a vector percentage count
versus percent deviation from the original
displacement vector.  For those compression
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algorithms which preserve spatial integrity of the
image, a histogram formed using equation (9) should
exhibit a narrow distribution centered around zero
percent deviation.  As spatial errors in the individual
u and v vector components increase (as would be
expected if the compression rate were increased), the
histogram will broaden and / or become non-
symmetric about zero percent deviation.

The final performance measure used for this
study is the DPIV false vector rate, defined as the
ratio of the number of false vectors detected during
validation of the vector field to the total number of
vectors processed:

        
PQ

VectorsFalse
FVR

#=       (10)

The FVR is represented as a percentage and is
computed for displacement vector fields obtained
from both the original image before compression (to
obtain a baseline) as well as the image after
compression.  Increases in the FVR due to
compression effects are indicative of introduced
spatial errors severe enough to cause the DPIV
processing algorithms to select an incorrect vector
magnitude and / or direction for one or more
interrogation regions in the compressed images.
Thus, a significant change in the FVR is a critical
indicator of large-scale errors introduced to the DPIV
displacement vector maps as a result of the
compression process.

IMAGE SEQUENCES CHOSEN FOR STUDY

One industry standard image sequence and two
sequences obtained from DPIV facility applications at
NASA Langley Research Center were chosen to test
the candidate compression algorithms.  Each
sequence contains 20 single images or image pairs
depending on whether single or double exposed
frames were acquired.  Table 2 lists the relevant
characteristics of each sequence and Figure 4 shows a
representative image from each sequence.

The industry standard sequence was obtained
from the Visualization Society of Japan (VSJ)
through their PIV Standard Project.14  The VSJ
standard images are fully documented and publicly
available, providing a way for researchers in the field
to test and compare various DPIV processing
algorithms.  Each image in the standard sequence
contains 65536, 8-bit pixels.  The sequence requires
cross-correlation analysis for processing, and the
images contain a “low” particle image density of a

few thousand particles per image.  The Normal
incidence Impedance Tube (NIT) sequence was
acquired in an acoustically driven, zero-mean flow
experiment conducted at NASA Langley Research
Center in 1998.15  Each image in this sequence
contains 1,366,200 8-bit pixels.  The sequence was
acquired using single-frame, double-exposure
imaging and thus requires the use of auto-correlation
analysis for processing.  Each image in the sequence
contains a “medium” particle image density of several
thousand particles per image.  Finally, a separated
flow image sequence was recently acquired by the
authors in the NASA Langley Subsonic Basic
Research Tunnel.  Each image in this sequence
contains 1,339,000 8-bit pixels.  The sequence
requires cross-correlation analysis for processing, and
each image contains a “high” particle image density
of over 5000 particles per image.

The choice of the three sequences listed in
Table 2 was based on several factors.  First, it was
desired to have three different particle image
densities available since this tests the ability of the
image compression algorithms to handle various
spatial frequency ranges.  In general, the greater the
particle image density, the higher the frequency
content of the resultant images.  It was also desirable
to have various background noise levels available in
the sequences.  By examining the representative
images shown in Figure 4, it can be seen that the VSJ
sequence images are the “cleanest” in the sense that
there is very little background noise present as
compared with the other two sequences.  Finally, it
was desirable to have a sequence contaminated with
unwanted flare light as shown in the separated flow
image in Figure 4 where unwanted reflections of laser
light were observed at the bottom of the image.  This
flare light can be thought of as a low frequency
contamination superimposed on the relatively higher
frequency content represented by the particle images.
This ensemble of image types provides the capability
for testing the candidate compression algorithms
under a number of realistic conditions.

EVALUATION PROCEDURE

Figure 5 depicts a flowchart showing the
compression algorithm evaluation procedure which
was adopted for this study.  For each image or image
pair in the three test sequences, an initial auto- or
cross-correlation analysis and validation was
performed to derive the baseline displacement vector
map and false vector rate information needed for
subsequent processing.  The auto- and cross-



8
American Institute of Aeronautics and Astronautics

correlation processing routines were written by the
authors and are based on classical DPIV spatial
analysis techniques as described by Raffel et.al. in
reference 1.  Table 3 lists parameters used to process
each of the sequences.  Identification and tabulation
of false vectors present in the displacement vector
maps were performed using magnitude difference
algorithms contained in the CleanVec validation
system developed by Soloff and Meinhart16 at the
Laboratory for Turbulence and Complex Flow at the
University of Illinois – Urbana.  Once the baseline
analysis for an image was completed, the image was
compressed using a candidate algorithm, and the
compression and bit rates computed using equations
(5) and (6).  The image was then decompressed and
equation (7) was used to compute the PSNR.  The
decompressed image was then analyzed and validated
using the identical processing parameters employed
to analyze the original image.  Note that identical
processing must be done on both the original and
decompressed images in order to remove any
influences on the displacement vectors other than
those introduced by the compression algorithm.  After
processing, false vectors identified during the
validation step were removed from the original and
decompressed vector maps, the FVR was computed
using equation (10), and equations (8) and (9) were
used to compute the global RMS errors and Eu, Ev

histograms.  The removal of false vectors before
computation of the RMS errors ensures that any
spatial errors which are detected are generated by
valid vectors only.  This is a  reasonable step because
the presence of invalid vectors would result in
inflated RMS errors given that erroneous vectors
typically deviate substantially from valid ones.

SAMPLE RESULTS AND DISCUSSION

LZ77 Results:  Six different gray level thresholds
spanning a range from 0 to 150 out of 256 gray levels
were chosen for the LZ77 evaluation.  A threshold of
zero results in implementation of the standard LZ77
algorithm.  For each test sequence, 20 images or
image pairs were thresholded using equation (1) and
compressed.  The images were then decompressed
and processed in accordance with the procedures
outlined previously, and the results were averaged.
Table 4 lists the average bit rates, false vector rates,
PSNR levels, and Eu,RMS  and Ev,RMS values for this
portion of the study.

Figure 6 illustrates the bit rate and PSNR level
versus applied threshold.  It is immediately evident
from examination of the results in Table 4 and the

graphs in Figure 6 that thresholding an image before
compression dramatically reduces the bit rate due to
removal of background noise.  The VSJ and NIT
sequences experienced the lowest bit rates as the
threshold was increased, while the separated flow
sequence showed bit rates approximately three times
as high.  This is not surprising given that the VSJ and
NIT sequences have lower particle image densities
and thus more “open” background areas.  A lower
density allows more of these background areas to be
zeroed out during thresholding, increasing the
matching lengths between the LZ77 dictionary buffer
and sequences of bytes in the image and thus
reducing the compressed image size.

An interesting result is seen in Table 4 in the
FVR, Eu,RMS  and Ev,RMS  values.  While there is a
dramatic decrease in the PSNR level for each
sequence as the bit rate is reduced, the effect on the
accuracy of the processed displacement vector maps
is negligible, even at the highest compression levels.
There is no change in the FVR between the baseline
and compressed results, and there are no discernable
bias errors in the vector maps.  The reason for this
insensitivity to threshold level stems from the
construction of the DPIV auto- and cross-correlation
processing algorithms where a thresholding of
individual interrogation regions in the image is
performed before computing the correlation
functions.  As can be seen from the parameters shown
in Table 3, the threshold level in the processing
software was maintained at a value of 150.  As long
as the threshold level in the LZ77 algorithm was kept
below the threshold level in the processing software,
no degradation in the resultant displacement vector
maps appeared.  Of course, if the compression
threshold is increased beyond that set in the
processing software, then increases in the FVR and
RMS bias levels are expected to appear.  Thus, when
applying LZ77 compression with thresholding to
DPIV images, a parametric study should be
conducted to determine the optimal balance between
compression threshold level and rate to maintain
negligible errors in the processed displacement vector
maps.  For those applications where thresholding of
interrogation regions cannot be performed during
processing, then it is advisable to choose one of the
lossy compression techniques examined in this study.
Alternately, the LZ77 algorithm can be applied alone,
at the expense of higher bit rates in the compressed
images.

JPEG Results:  Five different compression levels
ranging from 1 to 5 were chosen for the JPEG
evaluation, with level 1 representing the least
compression and level 5 representing the highest.  In
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a manner similar to that employed for the LZ77
evaluation, 20 images or image pairs in each
sequence were compressed and processed.  Table 5
lists the average bit rates, false vector rates, PSNR
levels, and Eu,RMS  and Ev,RMS  values for this portion of
the study.

Figure 7(a) shows the PSNR level as a function
of the bit rate using JPEG compression.  With the
exception of the NIT sequence (which exhibits a
flattening of the PSNR above 0.8 bits/pixel), the
PSNR levels decrease uniformly as the bit rate is
reduced.  The majority of the PSNR levels are greater
than 32 dB, indicative of little perceptual degradation
in the images.  Figure 7(b) depicts the change in FVR
as a function of bit rate.  In general, for bit rates of
1 bit/pixel and above, less than a one percent change
is noted in the FVR.  Below 1 bit/pixel, the FVR
starts to increase in the VSJ and separated flow
sequences, with the change in FVR reaching 2.5 to
3.5 percent for the lowest bit rates.  The NIT
sequence displays excellent stability in the FVR
across the entire range of bit rates employed in the
evaluation.  It is suspected that the excellent FVR
trend shown for the NIT sequence is related to the use
of auto-correlation analysis for the images.  The
auto-correlation analysis algorithm developed by the
authors uses a restrictive search box for the
correlation peak which may mitigate the generation of
false vectors, even at low compression bit rates.  The
other two sequences examined for this study utilized
cross-correlation analysis which does not employ a
search box.  The FVR trends for the VSJ and
separated flow sequences are superimposed on one
another in Figure 7(b) with the NIT results appearing
noticeably lower.

Figure 8 illustrates average Eu,RMS  and Ev,RMS

values for the three image sequences.  In general most
of the results are tightly grouped between 0.010 and
0.020 pixels with the Ev,RMS values for the VSJ
sequence appearing slightly higher at between 0.015
and 0.025 pixels.  These results would tend to
indicate that there are only small global spatial biases
being imparted to the images by the JPEG algorithm,
and that these biases do not increase appreciably as
the compression rate is increased.  Note that while
these results indicate that the JPEG algorithm
performs well in terms of the overall ensemble of
particle displacement vectors generated from
processing the compressed images, it is not indicative
of errors which may be introduced to individual
displacement vectors.  These individual spatial errors
can best be seen through the formation of Eu, Ev

histograms using equation (9).  Figure 9 displays a
series of representative Eu, Ev histograms for a JPEG
compression level of 5.  Several observations can be

made from an examination of these histograms.  First,
the shape of the histogram distribution depends
greatly on the type of DPIV image being compressed.
For the VSJ and NIT sequences, the Ev histograms
display a much more narrow distribution than the Eu

histograms.  This is to be expected, because the Eu, Ev

functions given in equation (9) are normalized by the
local u and v vector displacement components.  Thus,
the functions are sensitive to the predominant flow
direction.  For the VSJ and NIT sequences, the
predominant flow direction is aligned along the v
direction, making local v components much larger
than corresponding u components.  On the other
hand, the separated flow sequence contains highly
variable local u and v components, and thus displays
more balanced Eu and Ev histogram distributions.
The Eu, Ev functions could be normalized by the
displacement vector magnitude; however, this would
result in the generation of much more narrow
distributions which would make it harder to detect
subtle changes in distribution shape.  Using the local
u and v components for normalization make these
histograms more useful in the present study in that
they allow a better examination of changes as various
compression levels or algorithms are employed.

Figure 10 shows representative compressed
images from the three sequences for a JPEG
compression level of 5.  Perceptual changes can be
detected in the VSJ image as compared with the
corresponding original image shown in Figure 4.
Similar changes are much harder to detect in the NIT
image, while in the separated flow image, degradation
of the image is most easily seen in the background
area located at the top of the image.  Visual
differences in the images were reduced dramatically
as the compression level was decreased from level 5
to level 1.

Figure 11 shows overlaid image displacement
vector maps for JPEG compression levels of 1 and 5
for a representative image pair taken from the VSJ
sequence.  An examination of these maps reveals only
minor differences in the validated vector fields as the
compression level is increased from level 1 to level 5.
In particular, the largest deviations are noted in the
upper right quadrant of the vector map of Figure
11(b).  The JPEG compression algorithm produced
comparable vector maps for the other two image
sequences examined in the study.

Wavelet Results:  Four different compression levels
were chosen for the wavelet evaluation, with level 1
representing the least compression and level 4 the
highest.  In a similar manner to the LZ77 and JPEG
evaluations, 20 images or image pairs in each
sequence were compressed and processed.  Table 6
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lists the average bit rates, false vector rates, PSNR
levels, and Eu,RMS  and Ev,RMS values for this portion of
the study.

Figure 12 illustrates the change in PSNR level
as the bit rate is reduced.  Compared with the results
shown in Figure 7(a) for the JPEG algorithm, the
wavelet compression produces remarkably consistent
PSNR levels, with degradation of the PSNR only
occurring for bit rates below 1 bit/pixel.  This trend is
consistent with the nature of the wavelet algorithm –
the DWT removes information from the image across
a range of wavenumber scales, and thus does a better
job of preserving image features such as edges, dots,
etc., at higher compression rates.  A similarly
consistent trend can be seen in Figure 13 which
depicts the change in FVR as a function of bit rate.
The FVR is very consistent above bit rates of
1.5 bit/pixel, and actually indicates a reduction in the
FVR, in comparison to the uncompressed image
results, for bit rates above 0.5 bit/pixel.  The reason
for this decrease can probably be attributed to the
de-noising effect which the DWT imparts to the
images, an effect mentioned by Li in reference 6.  The
separated flow sequence would be most sensitive to
any de-noising since it contains the highest levels of
background and particle image noise among the three
sequences, and indeed from examining Figure 13, this
sequence shows the largest reduction in the FVR.

Figure 14 shows the average Eu,RMS  and Ev,RMS

values for the three image sequences using wavelet
compression.  As was observed for the JPEG
evaluation, most of the results are tightly grouped
between 0.010 and 0.020 pixels for bit rates above
0.5 bits/pixel.  There is consistency in the RMS
values across a wide range of bit rates.  These results
would tend to indicate that there are only small global
spatial biases being imparted to the images by the
wavelet algorithm, and that these biases do not
change appreciably as the compression rate is
increased.

Figure 15 displays a series of representative Eu,
Ev histogram functions for each of the three image
sequences for a wavelet compression level of 4.  In
general, the histogram distributions for the NIT and
separated flow image sequences are very similar to
those shown for the JPEG evaluation.  However, the
VSJ image sequence shows a much broader Eu

distribution and a slightly larger Ev distribution over
the JPEG results.  For reasons unknown, the Ev

distribution for this sequence also appears to be
slightly bimodal in structure, with a small peak
occurring at between 20 and 50 percent deviation.
The reason for the broadening of the distribution can
be explained via an examination of the wavelet
compressed images shown in Figure 16 and the

overlaid image displacement vector maps shown in
Figure 17.  The VSJ image shown in Figure 16(a) is
perceptively more distorted than the other two images
for similar compression bit rates.  The reason for the
increased distortion in the VSJ image is unclear, but
may be related to the wavenumber scales appearing in
the image – the wavelet compression algorithm
appears to have performed a poor job of thresholding
the detail coefficients for this particular sequence.  As
a result, the vector map shown in Figure 17(b) shows
more visible deviations between vectors derived from
the original and compressed images.  Based on these
results, it appears the wavelet compression technique
in general outperforms the JPEG algorithm; however,
it is advisable to conduct test runs using various
wavelet compression rates to determine the optimal
bit rate to use for a particular class of image.

Fractal Results:  Due to an image size limitation of
500,000 pixels in the commercial fractal compression
program used for this study, only the VSJ industry
standard sequence could be processed.  Nevertheless,
four different fractal compression levels were chosen,
with level 1 representing the least compression and
level 4 the highest.  As with the previous evaluations,
the 20 image pairs in the VSJ sequence were
compressed both with and without the use of fractal
templates and processed.  Table 7 lists the average bit
rates, false vector rates, PSNR levels, and Eu,RMS  and
Ev,RMS values for this portion of the study.  As can be
seen from the results presented in Table 7, the fractal
algorithm performs extremely poorly when used
without templates, with extreme degradation of the
compressed images and 40 – 50 percent increases in
the FVR observed.  These results are so poor that it is
essential that fractal image templates be used to guide
the process of compressing DPIV images.  For this
reason, the results which follow are based on the use
of templates during compression.

Figure 18 shows the PSNR levels and change in
FVR rate as a function of bit rate for the fractal
algorithm using templates.  The PSNR levels are
essentially constant across the entire range of bit rates
employed for the study.  This result is not surprising
given the self-similarity nature of the fractal
compression algorithm.  The use of self-similarity
equations implies that reconstructed fractal images
have similar spatial wavenumber characteristics
regardless of the amount of compression applied to
the original image.  DPIV images compressed using
the fractal technique over a range of bit rates should
have similar background and particle image features,
and thus similar PSNR levels.  In a like manner, the
change in FVR between the baseline and compressed
processed images is shown to be a consistent 3.5
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percent for all bit rates, as can be seen in
Figure 18(b).  The Eu,RMS and Ev,RMS  results shown in
Figure 19 are also constant at 0.022 pixels for the u
component and 0.033 pixels for the v component.

Figure 20 displays representative Eu, Ev

histograms for the VSJ sequence for a fractal
compression level of 4.  As with the wavelet
evaluation, the VSJ image sequence shows a much
broader Eu distribution and a slightly larger Ev

distribution over the JPEG results.  The reason for
this broadening can be seen in Figure 21.  The VSJ
image shown in this figure is perceptively more
distorted than for the other candidate compression
algorithms.  The selection of a proper fractal template
is critical towards controlling the quality of the
compressed images, and another choice for the
template may improve the VSJ image displayed in
Figure 21.  The optimization of fractal templates for
DPIV compression is an area for future study.

Figure 22 depicts two overlaid image
displacement vector maps derived from processing a
representative original and fractal compressed image
pair for compression levels of 1 and 4.  There are
similar slight vector deviations in both maps, again
showing an insensitivity of introduced spatial errors
to the level of compression applied.  This is a
remarkable result given the obviously degraded
appearance of the image in Figure 21, but implies that
while pixel amplitudes are being distorted with the
fractal algorithm, only minimal spatial distortions are
being introduced to the images.  Thus, if the level of
error is acceptable for a particular DPIV application
and if an appropriate DPIV template image can be
generated, extremely high compression levels may be
achieved using fractal compression.

SUMMARY

Based on the results of this study, there are
several candidate algorithms which may be
successfully applied to compress DPIV images with
minimal error.  For those applications where
thresholding of individual DPIV interrogation regions
can be performed before correlation functions are
formed, it is possible to achieve compressed bit rates
of less than 1 bit/pixel with no degradation of the
processed vector maps by using the LZ77 algorithm.
For those applications where thresholding cannot be
performed, the wavelet compression algorithm in
general yields the best performance in terms of
imparting negligible increases in the false vector rate
(in some cases actually decreasing the rate) and
imparting negligible increases in the Eu, Ev

histograms.  However, depending on the spatial
wavenumber content of individual images, test cases
need to be examined when using wavelet compression
to ensure that the proper detail coefficient thresholds
are selected, thus minimizing spatial errors.  If a
modest increase in the false vector rate can be
tolerated, then compressed bit rates of 0.5 – 2
bits / pixel can be achieved using JPEG or fractal
compression.  However, when using fractal
compression, a proper template image must be
selected if the image quality is to be optimized.
Regardless of the type of compression algorithm
contemplated for use with DPIV, it is advised that test
images be compressed and processed and that any
errors due to the algorithm be identified before
replacing the original images with compressed ones
during data archiving.
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Table 1 – Candidate Compression Algorithms Suitable for DPIV Use
Algorithm Information Retention Basis of Technique
LZ77 Lossless Dictionary Encoding
LZ77 with Thresholding “Pseudo” Lossless Dictionary Encoding
JPEG Lossy Discrete Cosine Transform
Wavelet Lossy Discrete Wavelet Transform
Fractal Lossy Self-Similarity Equation

Table 2 – Image Sequences Evaluated
Sequence Horizontal

Pixels
Vertical
Pixels

Image Type Particle
Image Density

Flow

VSJ 3D Standard
Sequence 301

256 256 Single-Exposure, Multiple-
Frame

Low Wall
Impinging Jet

Normal Incidence
Impedance Tube

1320 1035 Double-Exposure, Single-
Frame

Medium Acoustically
Driven, Zero-
Mean Flow

Separated Flow 1300 1030 Single-Exposure, Multiple-
Frame

High Low
Reynolds
Number

Separated
Flow

Table 3 – Auto / Cross Correlation Processing Parameters
Sequence Interrogation

Size, pixels
Interrogation Size

Overlap, %
Peak Detection Image Threshold

VSJ 3D Standard Sequence
301

32 x 32 50 3-point Parabolic Fit 150

Normal Incidence Impedance
Tube

128 x 128 50 3-point Parabolic Fit 150

Separated Flow 64 x 64 50 3-point Parabolic Fit 150

Table 4 – Results of LZ77 Compression Tests
Sequence Threshold Bit Rate,

bits/pixel
Baseline
FVR, %

FVR, % PSNR, dB Eu,RMS, pixels Ev,RMS, pixels

VSJ 301 0 5.48 0.98 0.98 Infinity 0.0000 0.0000
50 2.27 0.98 0.98 57.28 0.0000 0.0000
75 1.63 0.98 0.98 49.46 0.0000 0.0000

100 1.17 0.98 0.98 44.16 0.0000 0.0000
125 0.82 0.98 0.98 40.31 0.0000 0.0000
150 0.54 0.98 0.98 38.10 0.0000 0.0000

NIT 0 5.61 0.47 0.47 Infinity 0.0000 0.0000
50 5.11 0.47 0.47 64.62 0.0000 0.0000
75 2.69 0.47 0.47 34.02 0.0000 0.0000

100 1.21 0.47 0.47 28.32 0.0000 0.0000
125 0.78 0.47 0.47 26.93 0.0000 0.0000
150 0.58 0.47 0.47 26.42 0.0000 0.0000

Sep. Flow 0 5.64 8.88 8.88 Infinity 0.0000 0.0000
50 4.69 8.88 8.88 52.88 0.0000 0.0000
75 3.65 8.88 8.88 40.12 0.0000 0.0000

100 2.83 8.88 8.88 34.04 0.0000 0.0000
125 2.13 8.88 8.88 29.03 0.0000 0.0000
150 1.51 8.88 8.88 26.20 0.0000 0.0000
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Table 5 – Results of JPEG Compression Tests
Sequence Compress

Level
Bit Rate,
bits/pixel

Baseline
FVR, %

FVR, % PSNR, dB Eu,RMS,
pixels

Ev,RMS,
pixels

VSJ 301 1 2.06 0.98 1.21 49.19 0.0073 0.0121
2 1.32 0.98 1.60 44.43 0.0105 0.0174
3 0.92 0.98 2.21 41.51 0.0131 0.0210
4 0.79 0.98 3.42 40.51 0.0150 0.0244
5 0.72 0.98 3.22 39.72 0.0151 0.0239

NIT 1 1.43 0.47 0.48 44.59 0.0102 0.0108
2 0.83 0.47 0.48 44.59 0.0102 0.0108
3 0.54 0.47 0.38 42.04 0.0120 0.0160
4 0.46 0.47 0.58 41.09 0.0124 0.0167
5 0.42 0.47 0.53 40.38 0.0132 0.0183

Sep. Flow 1 1.42 8.88 9.47 37.83 0.0113 0.0079
2 0.86 8.88 10.47 34.56 0.0133 0.0084
3 0.58 8.88 11.37 32.34 0.0184 0.0110
4 0.49 8.88 11.70 31.50 0.0220 0.0123
5 0.46 8.88 12.33 30.86 0.0186 0.0116

Table 6 – Results of Wavelet Compression Tests
Sequence Quality

Level
Bit Rate,
bits/pixel

Baseline
FVR, %

FVR, % PSNR, dB Eu,RMS,
pixels

Ev,RMS,
pixels

VSJ 301 1 3.59 0.98 0.53 39.99 0.0098 0.0173
2 1.89 0.98 0.63 40.37 0.0097 0.0170
3 0.80 0.98 0.86 39.48 0.0133 0.0209
4 0.40 0.98 3.54 36.81 0.0240 0.0329

NIT 1 4.04 0.47 0.38 50.67 0.0078 0.0114
2 1.96 0.47 0.38 50.12 0.0081 0.0117
3 0.78 0.47 0.45 46.19 0.0091 0.0123
4 0.40 0.47 0.48 41.50 0.0124 0.0152

Sep. Flow 1 4.00 8.88 6.76 38.60 0.0132 0.0082
2 1.93 8.88 6.75 37.45 0.0140 0.0084
3 0.81 8.88 7.40 33.69 0.0141 0.0088
4 0.40 8.88 8.57 30.80 0.0177 0.0112

Table 7 – Results of Fractal Compression Tests
Sequence Quality

Level
Bit Rate,
bits/pixel

Baseline
FVR, %

FVR, % PSNR, dB Eu,RMS,
pixels

Ev,RMS,
pixels

VSJ 301 1 2.49 0.98 38.85 34.49 0.0925 0.1296
No Template 2 1.85 0.98 36.97 34.51 0.1680 0.2244

3 1.49 0.98 37.42 34.38 0.1385 0.1773
4 0.38 0.98 51.60 34.20 0.5840 0.6911

VSJ 301 1 2.50 0.98 4.38 33.18 0.0219 0.0338
Template 2 1.87 0.98 4.30 33.20 0.0221 0.0335

3 1.47 0.98 4.63 33.21 0.0220 0.0334
4 1.46 0.98 4.49 33.26 0.0223 0.0326
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Figure 4. Test Sequence Sample Images.
(a) VSJ Industry Standard Sequence

(b) LaRC Normal Incidence Impedance Tube
(c) LaRC Separated Flow
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(b)

(c)

16
American Institute of Aeronautics and Astronautics



Original DPIV

Image

Perform Baseline Auto

or Cross Correlation

Analysis on Image

Compress Image

Using Candidate

Algorithm

Compute Average Bit

Rate

Decompress Image

Perform Auto or Cross

Correlation Analysis

on Decompressed

Image

Compute Peak Signal

to Noise Ratio

Compute Eu, Ev

Histograms and RMS

Errors

Compute Baseline

False Vector Rate

Compute New False

Vector Rate

Remove False Vectors

from Both

Displacement Vector

Maps

Overlay Original and

Decompressed Vector

Maps

Figure 5. Compression Algorithm Evaluation Procedure.

17
American Institute of Aeronautics and Astronautics



0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
-1

0

1

2

3

4

VSJ 301 Sequence
NIT Sequence
Separated Flow Sequence

F
V

R
-
F
V

R
B

a
se

lin
e
,
p
e
rc

e
n
t

Bit Rate, bits/pixel

0.0 0.5 1.0 1.5 2.0 2.5
0.000

0.005

0.010

0.015

0.020

0.025

0.030

E
u
,R

M
S
,
E

v,
R

M
S
,
p
ix

e
ls

Bit Rate, bits/pixel

VSJ 301 Sequence E
u,RMS

VSJ 301 Sequence E
v,RMS

NIT Sequence E
u,RMS

NIT Sequence E
v,RMS

Separated Flow Sequence E
u,RMS

Separated Flow Sequence E
v,RMS

Figure 6. LZ77 Compression Results.
(a) Bit Rate vs Image Threshold Level

(b) LZ77 PSNR vs Bit Rate

Figure 7. JPEG Compression Results.
(a) PSNR vs Bit Rate

(b) JPEG Change in FVR vs Bit Rate

Figure 8. JPEG RMS Spatial Errors.

-20 0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

B
it

R
a
te

,
b
its

/p
ix

e
l

Gray Level Threshold

VSJ 301 Sequence
NIT Sequence
Separated Flow Sequence

0 1 2 3 4 5 6

25

30

35

40

45

50

55

60

65

70

P
S

N
R

,
d
B

Bit Rate, bits/pixel

VSJ 301 Sequence
NIT Sequence
Separated Flow Sequence

0.0 0.5 1.0 1.5 2.0 2.5
30

32

34

36

38

40

42

44

46

48

50

P
S

N
R

,
d
B

Bit Rate, bits/pixel

VSJ 301 Sequence
NIT Sequence
Separated Flow Sequence

(a) (b)

(a) (b)

18
American Institute of Aeronautics and Astronautics



Figure 9. Representative JPEG Error Histograms - Compression Level 5.
(a) VSJ Sequence, E (b) VSJ Sequence, E

(c) NIT Sequence, E (d) NIT Sequence, E

(e) Separated Flow Sequence, E (f) Separated Flow Sequence, E
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Figure 10. JPEG Compressed Images - Compression Level 5.
(a) VSJ Standard Sequence

(b) LaRC Normal Incidence Impedance Tube
(c) LaRC Separated Flow

(a)

(b)

(c)
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Figure 11. JPEG Displacement Vector Maps - VSJ Sequence.
(a) Compression Level 1
(b) Compression Level 5
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Figure 12. PSNR vs Bit Rate - Wavelet Compression.

Figure 13. Change in FVR vs Bit Rate - Wavelet Compression.

Figure 14. RMS Spatial Errors - Wavelet Compression.
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Figure 15. Representative Error Histograms - Wavelet Compression Level 4.
(a) VSJ Sequence, E (b) VSJ Sequence, E

(c) NIT Sequence, E (d) NIT Sequence, E

(e) Separated Flow Sequence, E (f) Separated Flow Sequence, E
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Figure 16. Wavelet Compressed Images - Compression Level 4.
(a) VSJ Standard Sequence

(b) LaRC Normal Incidence Impedance Tube
(c) LaRC Separated Flow

(a)

(b)

(c)
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Figure 17. Wavelet Displacement Vector Maps - VSJ Sequence.
(a) Compression Level 1
(b) Compression Level 4
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Figure 18. Fractal Compression Results.
(a) PSNR vs Bit Rate

(b) Change in FVR vs Bit Rate

Figure 19. RMS Spatial Errors - Fractal Compression.
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Figure 20. Representative Error Histograms - Fractal Compression Level 4.
VSJ Standard Sequence
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Figure 21. Fractal Compressed Image - Compression Level 4.
VSJ Sequence using DPIV Image Template

Figure 22. Fractal Displacement Vector Maps - VSJ Sequence.
(a) Compression Level 1 (b) Compression Level 4
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